

Na Traffic			Past Paper Question Bank Unit 1.1 Reaction Rates										JABchem				
Outcome	<u>Original</u> <u>Specimen</u> <u>Paper</u>	<u>New</u> Specimen Paper	<u>Nat5</u> 2014		<u>Nat5</u> 2016												
1	L1a L1c	L1c			L3b(ii)		L5d										
2a 2b 2c					mc2 L3b(iii)		mc1										
2d 3	L13c																
4	L1b	L1b	mc1	L1a	L3b(i)	mc1	L1b(i)	mc1 mc2									
5																	
Marking Scheme	Back of Paper	Back of Paper	<u>SQA Nat5</u> 2014 Msch		<u>SQA Nat5</u> 2016 Msch												

MC Qu	Answer	% Correct	Reasoning
2014 1	A	91	rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}}$ = $\frac{60-0}{20-0}$ = 3 cm ³ s ⁻¹
2016 2	С	79	 A temperature would have to be above 40°C to have reaction time less than 10s B temperature would have to be between 30-40°C to have time between 10-20s C temperature is less than 30°C reaction time must be more than 20s concentration is more than 0.1 reaction time must be less than 60s C concentration would have to be 0.1mol l⁻¹ and temperature below 20°C
2017 1	D	91	Rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}} = \frac{2g}{30s} = 0.0667 \text{ g s}^{-1}$
2018 1	A	-	☑A Increasing particle size decreases the reaction rate ☑B Increasing particle size increases the reaction rate ☑C Increasing concentration increases the reaction rate ☑D Adding a catalyst increases the reaction rate
2019 1	С	-	Rate = $\frac{\Delta Quantity}{\Delta Time}$ = $\frac{5 \text{ cm}^3}{2 \text{ min}}$ = 2.5 cm ³ min ⁻¹
2019 2	В	-	Rate = $\frac{\Delta Quantity}{\Delta Time}$ = $\frac{5 \text{ cm}^3}{2 \text{ min}}$ = 2.5 cm ³ min ⁻¹

Nat5	Answer	Reasoning							
2015	0 0 3 -1	Δguantity 120 - 96 24							
1a	0.8 cm ³ s ⁻¹	Rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}} = \frac{120 - 96}{90 - 60} = \frac{24}{30} = 0.8 \text{ cm}^3 \text{ s}^{-1}$							
2016	0.05	∆guantity 29-12 17 1							
3b(i)	0.85	Rate = $\frac{\Delta quantity}{\Delta time}$ = $\frac{29 - 12}{30 - 10}$ = $\frac{17}{20}$ = 0.85 cm ³ s ⁻¹							
2016	10	Maximum volume of hydrogen released = 37cm ³							
3b(ii)	60	Time at which 37cm ³ is achieved = 60s							
2016	increased	Zinc powder has a lower particle size than zinc lumps							
3b(iii)	reaction rate	Lower the particle size the faster the chemical reaction.							
2018	0 5 3 -1	Δ Quantity 77 - 62 cm ³ σ σ τ 1							
1b(i)	$0.5 \text{ cm}^3 \text{ s}^{-1}$	Rate = $\frac{\Delta Quantity}{\Delta Time} = \frac{77 - 62 \text{ cm}^3}{50 - 20 \text{ s}} = 0.5 \text{ cm}^3 \text{ s}^{-1}$							
2018		Total volume given off is the maximum height attained by the							
5d	44	graph.							

Na			Past Paper Question Bank											JABchem				
Irattic	Traffic Lights Unit 1.1 Reaction Rates																	
Outcome	Int2	Int2	Int2	Int2	Int2	Int2	Int2	Int2	Int2	Int2	Int2	Int2	Int2	Int2	Int2	Int2		
Ourcome	2000	<u>2001</u>	2002	<u>2003</u>	<u>2004</u>	<u>2005</u>	2006	<u>2007</u>	<u>2008</u>	2009	<u>2010</u>	<u>2011</u>	<u>2012</u>	<u>2013</u>	<u>2014</u>	<u>2015</u>		
1				L7b(i)								L4b(ii)	L2a(ii)		L1b(i)			
2a 2b 2c		mc5 L14c		mc2	mc4	mc1 L3d		mc2	mc1 L15c	mc3	mc1	mc3	mc2 L4b			mc6		
2d 3							L7b(iv)				L5c(ii)							
4	mc5	mc7	L13b(ii)	L7b(ii)	mc3	L3c		L2a			mc2	L4b(iii)	L2a(i)	L3b	L1b(iii)	mc5		
5																		
Marking Scheme	Not Published	Not Published	Not Published	<u>SQA Int2</u> 2003 MSch	<u>SQA Int2</u> 2004 MSch	<u>SQA Int2</u> 2005 MSch	<u>SQA Int2</u> 2006 MSch	<u>SQA Int2</u> 2007 MSch	<u>SQA Int2</u> 2008 MSch	<u>SQA Int2</u> 2009 MSch	<u>SQA Int2</u> 2010 MSch	<u>SQA Int2</u> 2011 MSch	<u>SQA Int2</u> 2012 MSch	<u>SQA Int2</u> 2013 MSch	<u>SQA Int2</u> 2014 MSch	<u>SQA Int2</u> 2015 MSch		

Int2	Answer	% Correct	Reasoning										
²⁰⁰⁰ 5	С	48	Rate = $\frac{\Delta quantity}{\Delta time}$ = $\frac{1.00 - 0.25}{20 - 0}$ = $\frac{0.75}{20}$ = 0.0375 mol l ⁻¹ s ⁻¹										
2001 5	В	79	VariableParticle SizeConcentrationFasterPowder4mol l^1SlowerRibbon2mol l^1										
2001 7	D	59	Rate = $\frac{\Delta quantity}{\Delta time}$ = $\frac{60 - 0}{20 - 0}$ = $\frac{60}{20}$ = 3 cm ³ s ⁻¹										
2003 2	С	26	ChangeEffect on Reaction RateEffect on Volume of Gas ProducedDecrease inSlowerSameConcentration(less successful collisions)(still same quantity of reactants)										
2004 3	В	51	Rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}} = \frac{1.00 - 0.25}{25 - 0} = \frac{0.75}{25} = 0.3 \text{ mol } l^{-1}$										
2004 4	С	73	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$										
2005 1	В	38	図A Graph Q is faster initially but no change to particle size so initial rate is same 図B 0.5g of magnesium would half the gas volume and powder is faster than ribbon 図C same mass of magnesium so final volume of gas given off would remain the same 図D increased mass of magnesium would increase volume of gas given off										
2007 2	D	74	D increased mass of magnesium would increase volume of gas given off A A colour change is one sign that a chemical reaction has taken place B A Gas given off is one sign that a chemical reaction has taken place C Temperature rising is one sign that a chemical reaction has taken place ID Solid disappearing is dissolving and a physical change not a chemical reaction										

· · · · · ·		-	
2008 1	В	86	 A Fastest: smallest particle size (powder) and highest concentration (4 mol l⁻¹) B Slowest: largest particle size (ribbon) and lowest concentration (2 mol l⁻¹) C Medium: smallest particle size (powder) and lowest concentration (2 mol l⁻¹) D Medium: Largest particle size (ribbon) and highest concentration (4 mol l⁻¹)
2009 3	D	95	 A zinc is below magnesium in the reactivity series so zinc reacts slower B magnesium lumps react slower than magnesium powder due larger particle size C zinc is below magnesium in the reactivity series so zinc reacts slower D Fastest: most reactive metal + highest concentration + smallest particles size
2010 1	A	89	☑A Ice Melting is a physical change as no new chemical has been formed ☑B Iron rusting produces a new chemical: $4Fe + 3O_2 \rightarrow 2Fe_2O_3$ ☑C Methane burns to form carbon dioxide and water: $CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$ ☑D Acid neutralises to form water: $H^+ + OH^- \rightarrow H_2O$
²⁰¹⁰	D	75	Rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}} = \frac{5-0}{20-0} = \frac{5}{20} = 0.25 \text{cm}^3 \text{ s}^{-1}$
2011 3	A	84	☑A increasing the volume of acid would not change the rate of reaction ☑B decreasing the size of marble chips would increase the rate of reaction ☑C decreasing the concentration of acid would decrease the rate of reaction ☑D increasing the temperature would increase the rate of reaction
2012 2	В	95	⊠A magnesium powder reacts faster than magnesium ribbon ☑B magnesium reacts faster than zinc and powder reacts faster than ribbon ☑C magnesium reacts faster than zinc ☑D magnesium reacts faster than zinc
2015 5	С	60	Rate = $\frac{\Delta quantity}{\Delta time}$ = $\frac{1.00 - 0.25}{25 - 0}$ = $\frac{0.75}{25}$ = 0.03mol l ⁻¹ s ⁻¹
2015 6	D	89	⊠A magnesium powder is faster than magnesium ribbon ⊠B magnesium powder is faster than magnesium ribbon ⊠C 4mol l ⁻¹ hydrochloric acid is faster than 2mol l ⁻¹ hydrochloric acid ⊠D 2mol l ⁻¹ hydrochloric acid and magnesium ribbon would be the slowest reaction

Int2	Answer	Reasoning							
2001	increases	A catalyst speeds up a chemical reaction without being used up itself.							
14c	rate of reaction	The larger the surface area of the catalyst the more sites where the							
2002 13b(ii)	Zn+Cu²⁺→Zn²⁺+Cu	reaction can be catalysed exist and the faster the chemical reaction. $Zn \rightarrow Zn^{2+} + 2e^{-}$ $Cu^{2+} + 2e^{-} \rightarrow Cu$ Add together equations cancelling out electrons $Zn + Cu^{2+} \rightarrow Zn^{2+} + Cu$							
2003		Time Concentration Change in concentration							
7 b(i)	0.006	Os 0.010 mol l ⁻¹ 0.010 - 0.004 400s 0.004 mol l ⁻¹ = 0.006 mol l ⁻¹							
2003	0.000015								
7b(ii)	or 1.5 ×10 ⁻⁵	Rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}}$ = $\frac{0.010 - 0.004}{400 - 0}$ = $\frac{0.006}{400}$ = 0.000015 cm ³ s ⁻¹							
2005 3c	1.8±0.05	Rate = $\frac{\Delta quantity}{\Delta time}$ = $\frac{72 - 0}{40 - 0}$ = $\frac{72}{40}$ = 1.8 cm ³ s ⁻¹							
2005 3d	Greater number of collisions so faster reaction	Collision Theory can explain changes to reaction rate:ChangeEffectCollision TheoryIncrease Concentration Increase Temperature Decrease Particle SizeReaction Rate increasesIncreases the number of successful collisions giving increased reaction rate.							
2006 7b(iv)	1g	Catalyst is not used up during the experiment and full mass of catalyst is left over at the end of the experiment.							
2007 2a	1.45	Rate = $\frac{\Delta quantity}{\Delta time} = \frac{29 - 0}{20 - 0} = \frac{29}{20} = 1.45 \text{ cm}^3 \text{ s}^{-1}$							
2008 15c	Powders react too fast	Powders react much faster than lumps							
2010 5c(ii)	Lowers temperature cracking takes place	Catalyst are used to speed up reactions and are not used up in the reaction. Catalyst can be used to lower the temperature a reaction takes place at, often for safety reasons.							
2011 4b(ii)	34-35	Problem Solving: Estimation of end of reaction							
2011 4 b(iii)	0.1	Rate = $\frac{\Delta quantity}{\Delta time}$ = $\frac{2.2 - 1.2}{20 - 10}$ = $\frac{1}{10}$ = 0.1 bar min ⁻¹							
2012 2a (i)	2.75	Rate = $\frac{\Delta quantity}{\Delta time}$ = $\frac{32 - 10}{10 - 2}$ = 2.75 l ms ⁻¹							
2012 2a (ii)	4.5	Problem Solving: Reading values from a line graph							
2012 4b	Increased surface area allows more collisions	The greater the surface of a substance, the greater the surface on which the reaction can take place. ∴ greater the number of collisions ∴ greater reaction rate							
2013 3b	18	rate = $\frac{\Delta \text{quantity}}{\Delta \text{time}} = \frac{72-0}{40-0} = 18 \text{ cm}^3 \text{ s}^{-1}$							

2014 1b(i)	Use syringe to collect gas	All gases can be collected in a gas syringe and their volumes measured against the scale on the gas syringe. Gases which are insoluble can also be collected over water as shown in the diagram.
2014 1b(iii)	10	Rate = $\frac{\Delta quantity}{\Delta time} = \frac{86 - 46}{6 - 2} = 10 \text{ cm}^3 \text{ min}^{-1}$

Na	Nat5 Past Paper Question Bank															
Traffic Lights Unit 1.1 Rea									Rat	es		JABchem				
Outcome					<u>2004</u>											
	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>	<u>Credit</u>		
1					12a					13b(i)			11a			
2a 2b 2c					12c		12c			13c	12d		11b(i) 11b(ii)	18a(ii)		
2d 3	11c(i)					12b(ii)						16b(i)				
4													13b(ii)			
5																

SG Credit	Answer	Reasoning								
2000 <i>C</i> 11c(ii)	Less energy used or lower temperature required for reaction	Catalyst speed up reactions without being used up in the reaction. A catalyst can reduce the temperature required to achieve a successful reaction (so can be safer)								
2004 <i>C</i> 12a	gas produced escapes from flask	carbon dioxide gas produced will escape from flask which make the mass inside flask lighter								
2004 <i>C</i> 12c	0.8g	Hydrochloric acid is in excess \therefore marble chips chemically run out Same mass of marble chips in flask \therefore same mass of gas escapes								
2005C 12b(ii)	lower temperature or less energy required	Catalyst can use less energy to perform the same reaction improving safety and efficiency/costs								
2006 <i>C</i> 12c	36-40	value must be higher than 35 but not higher than maximum volume of 40								
2009 <i>C</i> 13b(i)	Gas given off	The flask loses mass as the gas produced by the chemical reaction leaks out of the top.								
2009 <i>C</i> 13c	Answer: 0.81 - 0.86	The mass loss must be greater than 0.80g but cannot be higher than 0.86g as this is the mass loss at the end of the reaction.								
^{2010C} 12d	53cm ³	Reaction with dilute sulphuric acid was finished at 60seconds At a higher concentration of sulphuric acid will finish before 60seconds but will still produce same final volume of gas (53cm³)								
2011 <i>C</i> 16b(i)	Lowers temperature reaction takes place at	Catalysts speed up a chemical reactions but are not used up in reaction Catalysts can lower the temperature at which the reaction can take place at.								
2012 <i>C</i> 11a	2	The reaction is finished when the line becomes horizontal. Lines 1 and 3 become horizontal before Line 2.								
2012 <i>C</i> 11b(i)	one from:	Decrease in concentration or increase in particle size								
2012 <i>C</i> 11b(ii)	0.5g	Line 3 gives off half the volume of gas as Line 1. \therefore As there is excess hydrochloric acid, mass of zinc must be halved.								
2012 <i>C</i> 13b(ii)	1.5	Rate = $\frac{\Delta quantity}{\Delta time}$ = $\frac{55-40}{30-20}$ = $\frac{15}{10}$ = 1.5 cm ³ /s								
2013 <i>C</i> 18a (ii)	37	Increasing the temperature will increase the rate of reaction and the gas will be given off quicker. However, the final volume of gas given off will be 37cm ³ as the volume of gas given off is fixed by the quantities of reactants used (which are the same in both experiments)								

Na	Nat5 Past Paper Question Bank														
Traffic	JABChew JABchew											M			
Outcome	2000 General		2002 General			2005 General						<u>2011</u> General	2013 General		
1		16a 16b		18b(i)											
2a 2b 2c		16c					9b	13c	13a(ii)			19a(i) 19b(ii)			
2d 3		11a 16d			17a(i) 17a(ii) 17b	9c		14c(i)	16c 18b(i)	13a	15c(iii)		15c		
4															
5															

SG General	Answer	Reasoning							
2001 <i>G</i>	speeds up	A catalyst speeds up a chemical reaction but the catalyst is not used up							
11a	chemical reaction	in the reaction and can be fully recovered at the end of the reaction.							
2001 <i>G</i>	40 3								
16a	40cm ³	Problem Solving: Reading Information from a line graph							
2001 <i>G</i>	same final volume of	If the same conditions are used in both experiments (apart from the changing							
16b	gas given off	temperature) then the same volume of gas will be given off at the end of the reaction							
2001 <i>G</i>	line is steeper at	The gradient of the line is the rate of reaction.							
16c	beginning	The steeper the line the faster the reaction							
2001 <i>G</i>	0.2	Catalysts speed up reactions with being used up in the reaction							
16d	0.2g	Same mass of catalyst can be recovered at the end of the reaction							
2003 <i>G</i>	no gas given off or	The experiment will release carbon dioxide gas as the reaction is proceeding.							
18b(i)	mass is same	The reaction is over when the gas is stopped being produced and no more mass is lost on the balance.							
2004 <i>G</i>	speeds up	A catalyst speeds up a chemical reaction but the catalyst is not used up							
17a(i)	chemical reaction	in the reaction and can be fully recovered at the end of the reaction.							
2004 <i>G</i>	0.1-								
17a(ii)	0.1g	Same mass of catalyst at beginning and end							
	50cm ³ of	In a fair test, only one variable can change at one time:							
2004 <i>G</i>	2mol/l hydrogen peroxide	 Question identifies TEMPERATURE as the variable which is changing Temperature is increased from 25°C to 35°C 							
17b	0.1g manganese diaxide	 Volume of hydrogen peroxide solution must remain constant (50cm³) Concentration of hydrogen peroxide solution must remain constant (2mol/l) Mass of manganese dioxide must remain constant (0.1g) 							
2005 <i>G</i>	a substance which	Catalysts speed up reactions but are not used up in the reaction.							
9c	speeds up a reaction	Same mass of catalyst left at end of reaction.							

2004.0		
2006G	less time taken	Smaller particle size after crushing makes reaction faster, making
9b		gas pressure inside tub increase faster
2007 <i>G</i>	Increases	Methods to increase rate of chemical reaction:
13c		increase concentration increase temperature decrease particle size
2007 <i>G</i>	0.1g	Catalysts are chemically unchanged during reactions same mass of catalyst at start and end of reaction
14c(i)		
2008 <i>G</i>	speed increases	Powdered zinc has a smaller particle size than lumps of zinc so powdered zinc reacts faster than lumps of zinc.
13a(ii)		
	25°C	In a fair test, only one variable changes at the time. From question,
2008 <i>G</i>		concentration is the variable which is being altered.
16c	20cm ³	 Volume of hydrogen peroxide stays at 20cm³ Temperature stays at 25°C
	1g	Mass of vegetable stays at 1g
	to speed up reaction	
2008 <i>G</i>	or	Catalysts speed up chemical reactions without being used up in the
18b(i)	less energy/heat	reaction.
	required	
2009 <i>G</i>	0.8g or	Catalysts are chemically unchanged during reactions
13a	the same	\therefore same mass of catalysts at start and end of reaction
2010G	Speeds up chemical	A catalyst speeds up a chemical reaction but the catalyst is not used up
15c(iii)	reaction	in the reaction and can be fully recovered at the end of the reaction.
2011G	5	Total volume must be the same in each experiment at 25cm ³
19a (i)		
2011G	Experiment 2 is	Experiment 2 is slower than experiment 1 as it has less concentrated
19a (ii)	slower	acid. the lower the concentration, the slower the reaction
2013G		
15c	0.7g	Catalyst is not used up in reaction so original mass will remain